A quantitative study on morphological responses of osteoblastic cells to fluid shear stress.

نویسندگان

  • Xiaoli Liu
  • Xu Zhang
  • Imshik Lee
چکیده

Fluid shear stress (FSS) is widely explored regarding its influence on osteoblasts. In vitro studies have shown that the cytoskeleton is very important in cellular responses to FSS. However, morphological changes, which would reflect the cytoskeleton changes as well as other cellular responses, were rarely quantitatively studied in the past years. Therefore, FSS-induced morphological changes in osteoblasts were quantified in this study. Real-time rapid morphological responses were observed by exposing osteoblasts to FSS with magnitude of 1.2, 1.6, and 1.9 Pa for 1 h. Afterward, osteoblast actin cytoskeleton was labeled with rhodamine phalloidin and observed using fluorescence microscopy. The results showed that 1.6 and 1.9 Pa FFS resulted in significant cellular elongation and reorientation along the direction of fluid flow. Besides, along with the enhancement of FSS magnitude, cytoskeleton aggregated more remarkably. Furthermore, extracellular Ca(2+)-depleted fluid flow was also used to stimulate osteoblasts for 1 h with magnitude of 1.6 and 1.9 Pa. No morphological change was observed after removing extracellular calcium. Our study suggested that the level of FSS from 1.2 to 1.9 Pa is capable of influencing cellular morphology, and extracellular calcium might play a role in osteoblasts' response to FSS stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain.

The nature of the stimulus sensed by bone cells during mechanical usage has not yet been determined. Because nitric oxide (NO) and prostaglandin (PG) production appear to be essential early responses to mechanical stimulation in vivo, we used their production to compare the responsiveness of bone cells to strain and fluid flow in vitro. Cells were incubated on polystyrene film and subjected to ...

متن کامل

Nitric oxide production by bone cells is fluid shear stress rate dependent.

Shear stress due to mechanical loading-induced flow of interstitial fluid through the lacuno-canalicular network is a likely signal for bone cell adaptive responses. Moreover, the rate (determined by frequency and magnitude) of mechanical loading determines the amount of bone formation. Whether the bone cells' response to fluid shear stress is rate dependent is unknown. Here we investigated whe...

متن کامل

Application of quantitative morphological cytometry for evaluation of shear stress: potential for HCS systems

Shear stress is known to have a significant effect on the state of cellular differentiation. It also induces morphologic responses including changes to cytoskeletal organization subsequently leading to changes in cell shape. In fact, fluid shear stress caused by blood flow is a major determinant of vascular remodeling and can lead to development of atherosclerosis. The morphological changes are...

متن کامل

Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces.

In this study we report on direct involvement of fluid shear stresses on the osteoblastic differentiation of marrow stromal cells. Rat bone marrow stromal cells were seeded in 3D porous titanium fiber mesh scaffolds and cultured for 16 days in a flow perfusion bioreactor with perfusing culture media of different viscosities while maintaining the fluid flow rate constant. This methodology allowe...

متن کامل

Fluid shear stress-induced cyclooxygenase-2 expression is mediated by C/EBP beta, cAMP-response element-binding protein, and AP-1 in osteoblastic MC3T3-E1 cells.

Mechanical loading is crucial for maintenance of bone integrity and architecture, and prostaglandins are an important mediator of mechanosensing. Cyclooxygenase-2 (COX-2), an inducible isoform of prostaglandin G/H synthase, is induced by mechanical loading-derived fluid shear stress in bone-forming cells such as osteoblasts and osteocytes. In this study, we investigated transcription factor and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2010